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Abstract 

The largest post-salt turbidite oil fields in the world are 
situated in the Campos Basin, whereas the largest pre-salt 
microbialite carbonate reservoirs oil fields in the world are 
situated in the Santos Basin. Salt tectonics (halokinetics) 
control the structural fabrics of the Campos Basin. Post-
salt deepwater turbidite plays that were deposited 
synchronously to halokinesis and reservoir 
characterization are tied to the development of the salt 
mini-basins. Future offshore exploration will continue 
targeting these post-salt deepwater and ultra-deepwater 
mini-basins in addition to the pre-salt plays under the 
massive salt walls, which still remains an under-explored 
frontier. In this case study, we propose a new approach to 
deep learning that augments seismic interpretation and 
provides further detail to understand this complex play. 

 

Introduction 

The main producing deepwater oil fields in Campos Basin 
are in shelf-derived turbiditic sands encountered in the 
upper and lower continental slope from the Miocene to 
Upper Cretaceous. From their discovery period between 
1985 to 1997, these deepwater sands continue to produce 
in the Campos Basin (Guardado et al., 2000). Among these 
are the Marlim, Albacora, Roncador, Barracuda and 
Espadarte Fields. The oil and gas plays are mostly 
confined to stratigraphic features within the higher horst 
blocks. However, in deepwater, these are primarily 
turbidite plays. Campos Basin turbidite reservoirs are 
encountered in the upper and lower continental slope from 
the Miocene to Upper Cretaceous and in distal marine 
turbidite channel sands of the lower slope. Recoverable 
reserves for the giant Albacora, Marlin and Roncador 
Fields are expected to exceed 10 BBO throughout their 
time span of production (Fainstein et al., 2019).  

The structural framework of these deepwater plays is 
entirely controlled by salt tectonics. The salt fairway 
becomes progressively narrower towards the north (Bahia 
and Sergipe), and no salt is encountered in the equatorial 
transform margin basins (Fainstein et al., 2019). Syn-
depositional differential loading within the turbidite 
sequences were the main driving mechanism for salt 
evacuation. This caused the salt layers to thin and form 
tilted faulted blocks seaward dipping, where anticline 

features are formed in association with block bounding 
listric faults, resulting in turtle-back structures mainly 
involving the Albian carbonates and turbidite reservoirs 
within Paleogene to Neogene mini-basins (Krueger and 
Gilbert, 2007 and Krueger and Gilbert, 2009).  

Lacustrine sediments of the syn-rift reached the oil 
generation window around the Eocene time period. Source 
rocks are separated from the main reservoirs by a salt 
layer, thus oil migration from source to reservoirs required 
migration pathways through salt windows (Mello et al., 
1994). In regions where salt is absent, oil reached the 
younger reservoirs along faults related to salt movement.  

The deepwater plays required substantial exploration 
investments, such that during the contemporary period 
after 1997 up to the first decade of the 21st century, more 
than 200 exploratory wells have been drilled on water 
depths greater than 1 km. New oil discoveries have been 
made in the Santos, Campos and Espírito Santo Basins 
(Fainstein et al., 2019). In the mature Campos Basin, a 
focus on detailed interpretation is key for creating detailed 
reservoir models, which are required for continued 
production and for the opportunity to add satellite 
opportunities. 

With deep learning, it is now possible to add the level of 
detail needed to develop these plays, by mapping detailed  
salt surfaces and thousands of faults in a short period of 
time. To demonstrate the feasibility of this workflow, we 
conducted a case study within the northern region of the 
Campos Basin using a 3D seismic survey (Figure 1). The 
study area contains a plethora of faults and salt features, 
such as salt welds and overhangs, that are particularly 
challenging to map.  

Figure 1 – Location of the 3D seismic survey used in the 
case study of the Campos Basin.  
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Methodology 

Many recent studies (LeCun et al., 2015; Ronneberger et 
al., 2015; Bandura et al., 2018; Chopra and Marfurt, 2018; 
Chenin and Bedle, 2019) have highlighted the promising 
applications of machine learning for analyzing and 
interpretating geologic patterns. We apply a deep learning 
methodology which differs from current ones, due to the 
high level of interactivity it provides between the deep 
learning process and the interpreter. This process is 
referred to as interactive deep learning.  

The key differences between traditional and interactive 
deep learning approaches are shown in Figure 2. 
Traditional methods require significant data preparation 
before the network can be run, since TensorFlow records 
are static and cannot be modified on the fly. However, this 
unnecessary burden is avoided using our interactive 
methodology (Figure 2). Interactive deep learning is 
possible using random access and proprietary 
compression technology for seismic data.  

 

Figure 2 – Comparison of traditional and interactive deep 
learning technology for seismic interpretation. With 
traditional deep learning technology, the process starts 
with SEGY data. These patches are later created and 
randomized. With the interactive deep learning 
methodology, steps 2, 3, 4 and 5 are eliminated, thus 
accelerating the time to obtain a solution. 

 

Deep learning is accelerated to enable interactive 
feedback by using random access to seismic data. Our 
methodology allows the geoscientist to label the data, train 

the network, and analyze the predictions (also referred to 
as inference) in real-time with different configurations. 
Therefore, the geoscientist does not rely on “black box” 
utilities to generate a high-quality result and can instead 
provide active feedback and reinforcement to the network 
while concurrently training it. The geoscientist can keep 
training until they achieve the optimal inference result. This 
method embeds quality control with training and 
interpretation, therefore removing the disadvantage of 
laborious and tedious quality control. 

We present our custom deep learning approach that 
reduces the dimensions using “valid padding” between the 
features (seismic data) and the labels (interpretations 
created by the geoscientist). The reduction uses “valid 
padding”, instead of “same padding”, during the 
convolutions to maximize the amount of information into 
the Convolutional Neural Network (CNN) computation 
(Figure 3). While “same padding” has some advantages for 
designing networks easily, in our network it is 
disadvantageous, as it fills the convolutions with zeros, 
therefore omitting some of the data near the edges of the 
patches. Finally, our deep learning model was defined 
using a small number of layers and trainable weights to 
allow for rapid calculations and accurate results. The deep 
learning model can now be operated interactively, 
providing swift responses to interpreter input. 

 

Figure 3 – Example of a CNN adapted from Ronneberger 
et al., 2015 consisting of a combination of different 
operations called “convolution” and “down-sampling/max 
pooling”. The number and combinations of convolutions 
and max pooling operations within a CNN can vary for a 
plethora of reasons, mostly depending on the type of 
problem being solved. It is important to note that our 
method uses slightly different input and output sizes 
compared to this model. 

 

Interactive Deep Learning: Fault and Salt Labels 

The post-stack seismic survey used in this case study is 
composed of 1272 inlines and 3550 crosslines.  For the 
fault deep learning network, we labeled 5 inlines and 10 
crosslines (Figure 4A-B). As can be seen in Figure 4A-B, 
the labelled lines are not evenly distributed along the 
survey. The method used to select these lines was based 
on their unique representation of the fault geometries of 
interest. All faults that were mapped are either associated 
to salt evacuation features, or to folding associated to the 
formation of salt diapirs, salt walls, and turtle structures. 
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Figure 4 – Example of faults labelled on A) an inline and 
B) a crossline. The pink lines on the 2D map represent the 
other labelled lines used for training the fault network. 

 

For the salt network, a total of 6 inlines and 3 crosslines 
were labelled (Figure 5A-B). Similar to the labelling 
workflows for the fault network, we labeled the lines that 
represented the variability of the seismic expression of the 
salt observed in the survey, as well as the varying signal to 
noise ratio. The labels included various salt structures such 
as salt pillows, salt walls, and salt welds. 

 

Results 

The fault network was trained for roughly 15 epochs (total 
time of about 11 minutes) whereas the salt network was 
trained for approximately 50 epochs (total time of about 37 
minutes). Both networks were trained separately and from 
scratch until the inference exceeded an accuracy greater 

Figure 5 – Example of salt labelled A) on an inline and B) 
a crossline. The pink lines on the 2D map represent the 
other labelled lines used for training the fault network. 

 

than 90%. Inference results are displayed in Figures 6A-B 
and 7 terms of probability volumes for both faults and salt.  
Using very few lines, we were able to train both models, 
create detailed inference volumes, and output surfaces for 
salt features and thousands of faults within a day. The fault 
network was able to successfully infer both normal and 
reverse faults.  

Furthermore, the salt network was able to predict the 
obvious salt diapirs and the more elusive salt welds. The 
inline on Figure 6A, highlights the highly rugose salt pillows 
with normal and reverse faults on top. The inference on the 
crossline shown in Figure 6B accurately captures the 
flower structure and the thin salt layer. Figure 7 highlights 
the relationship between the faults and salt in a time slice, 
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where salt mini-basins are flanked by diapirs, and are 
highly faulted. 

 

Figure 6 – Example of the inference displayed for both salt 
and faults simultaneously on A) an inline and B) a 
crossline.  

 

 

Figure 7 – Timeslice taken at 3412 ms displaying the 
predictions for both faults and salt. Note how the prediction 
was able to differentiate between salt and rafted sediment 
in the upper right corner. 

 

Once satisfied with the fault and salt results, fault surfaces 
and salt geobodies was extracted from the deep learning 
networks’ inferences using proprietary algorithms. Minimal 
post-processing, such as applying a gaussian smoothing 
filter of 4, was performed on the surfaces and geobodies. 
Figure 8 displays the final salt geobodies and fault surfaces 
generated from deep learning network predictions.  

Throughout the dataset, both inferences were accurate 
and captured the true extent of salt tectonics and 
associated deformation. While some slight 
misclassifications are present within both networks, they 
were able to identify these geologic patterns in a similar 
manner as a seismic interpreter. Nevertheless, these 
complex geologic features identified by the deep learning 

network enables the geoscientist to gain further insights 
into the complex petroleum system of the Campos Basin. 

 

Figure 8 – 3D seismic volume displayed together with the 
fault surfaces and the salt geobodies generated from their 
respective deep learning networks. 

 

Concluding Remarks 

Within a short period of time, we were able to use deep 
learning to map all faults and salt geobodies in a 3D 
seismic survey. We started with an untrained network and 
were able to create a detailed representation of the 
geology and petroleum system within the Campos Basin. 
With the ability to add this level of detail to the 
interpretation, geoscientists can now gain an 
unprecedented level of understanding of the petroleum 
system and reservoir models. The technology of interactive 
deep learning has the potential to optimize exploration and 
improve interpretations, while doing so in a fraction of the 
time and minimizing interpretation error.  
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